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ABSTRACT
We study a particular multiagent resource allocation prob-
lem with indivisible, but sharable resources. In our model,
the utility of an agent for using a bundle of resources is the
difference between the valuation of that bundle and a con-
gestion cost (or delay), a figure formed by adding up the
individual congestion costs of each resource in the bundle.
The valuation and the delay can be agent-dependent. When
the agents that share a resource also share the resource’s
control, the current users of a resource will require some
compensation when a new agent wants to use the resource.
We study the existence of distributed protocols that lead to
a social optimum. Depending on constraints on the valua-
tion functions (mainly modularity), on the delay functions
(e.g., convexity), and the structural complexity of the deals
between agents, we prove either the existence of some se-
quences of deals or the convergence of all sequences of deals
to a social optimum. When the agents do not have joint con-
trol over the resources (i.e., they can use any resource they
want), we study the existence of pure Nash equilibria. We
provide results for modular valuation functions and relate
them to results from the literature on congestion games.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent Systems

General Terms
Algorithms, Economics, Theory

Keywords
Multiagent Resource Allocation, Congestion Games

1. INTRODUCTION
The generic problem of allocating a set of resources to a
group of agents is a key problem in multiagent systems [3].
Some independent dimensions of a resource allocation prob-
lem are the type of resources (e.g., resources can be divisible
or not, sharable or not), the allocation procedure (e.g., auc-
tions or distributed mechanisms), and the criteria used to
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specify what makes an allocation optimal (e.g., maximising
utilitarian or egalitarian social welfare, obtaining an envy-
free division). Hence, there are many classes of problems to
study in multiagent resource allocation (MARA).

Thus far, a great effort has been spent on distributed allo-
cations of indivisible nonsharable resources [4, 5, 6, 7, 8]. In
this setting, a resource is owned by an agent, and an agent
receives a valuation for owning a set of resources. Synergies
between resources can be taken into account, which plays
an important role in the results. To improve an allocation,
agents can exchange resources (sometimes in combination
with a monetary transfer). This line of research has identi-
fied protocols that converge to optimal allocations for cer-
tain classes of valuation functions. In some cases, simple
protocols (e.g., involving only two agents and one resource
at a time) are sufficient, while more complex protocols are
required in others. Simple protocols exist, for instance, for
maximising utilitarian social welfare [5] and for finding envy-
free divisions [4]. The goal of this paper is to extend this
line of research to the case of indivisible resources that are
sharable, as many resources are by their very nature sharable
(for example, roads, supercomputers).

The problem of sharing a set of resources is not new,
and has received much attention in the game theory liter-
ature. In particular, congestion games [11] feature agents
that share a set of resources and obtain utility for each re-
source they use. For a resource, the utility obtained is a
function of the number of agents using that resource. This
class of games is of particular interest, as congestion games
have the property of possessing pure-strategy Nash equilib-
ria. In the seminal paper by Rosenthal [11], agents using the
same resource receive the same payoff, and this payoff de-
pends only on the number of agents that use that resource.
Milchtaich [9] extended the model by allowing the payoffs
to be player-dependent, but the existence of pure-strategy
Nash equilibria is guaranteed only when each of the agents
uses a single resource.

In a congestion game, the utility of an agent is the sum of
the utilities received for each resource. In particular, these
models do not take into account the synergies between re-
sources. Our goal is to study distributed resource allocation
problems where synergies between resources may exist and
where resources can be shared. We introduce a model where
the utility of an agent is the difference between a benefit
from the set of resources it uses (a valuation function, as
in the MARA framework for nonsharable items) and a cost
that depends on the congestion of each resource (a delay
function, as in congestion games). Our goal is first to define
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simple protocols that lead to a socially optimal outcome,
and we will restrict ourselves to utilitarian social welfare to
define what constitutes a social optimum. Our second goal
is to identify instances of our model in which the existence
of a pure-strategy Nash equilibrium can be guaranteed.

Section 2 defines the model of MARA we shall be working
with and recalls a number of relevant results from the liter-
ature. In Section 3, we present our results regarding simple
protocols that permit (or even guarantee) convergence to a
socially optimal allocation when individually rational agents
negotiate; and in Section 4, we present our results concern-
ing the existence of Nash equilibria.

2. THE MODEL
In this section, we introduce our model of MARA with
sharable items; but first, we recall some details regarding
the MARA framework with nonsharable items. Then we
briefly discuss one specific issue arising in the context of
sharable resources: the question of control of the resources.

2.1 MARA with Nonsharable Items
A MARA problem with indivisible nonsharable items [5, 8]
is defined as a triplet (N ,R,V), where N = {1, 2, . . . , n} is
a finite set of agents, R is a finite set of resources (or items),
and V = 〈v1, . . . , vn〉 is a profile of valuation functions where
∀i ∈ N , vi : 2N → R. An allocation is a partition of the
set of resources between the agents. A solution to a MARA
problem is an allocation that satisfies certain properties. For
example, we may want a solution to maximise utilitarian so-
cial welfare (i.e., the sum of the valuations of all agents), or
be envy-free (no agent wants to swap resources with any
other agent). In a framework where agents can use money,
a payment function is a vector p = 〈p1, ..., pn〉 such thatP

i∈N pi = 0. When pi > 0, agent i must make a pay-
ment. When pi < 0, agent i receives a payment. A deal
δ = (σ, σ′) is a transformation from an allocation σ to an
allocation σ′. A 1-deal is a deal involving the exchange of
a single resource between two agents. A deal δ = (σ, σ′) is
individually rational (IR) if there exists a payment function
p such that ∀i ∈ N , vi(σ

′) − vi(σ) > pi, except for agents
i with σ(i) = σ′(i) for whom pi = 0 is also permitted. The
following theorem applies to problems of this kind [8, 12]:

Theorem 1. For allocation problems with nonsharable
items, any sequence of IR deals will eventually result in an
allocation with maximal utilitarian social welfare.

One drawback is that IR deals may be complex and involve
many agents and resources. For modular valuation func-
tions, satisfying v(S ∪ S′) = v(S) + v(S′) − v(S ∩ S′) for
any sets S, S′ ⊆ R, however, simple deals involving only
two agents and one resource are sufficient to reach a social
optimum, as shown by the following theorem [5, 8]:

Theorem 2. For allocation problems with nonsharable
items, if all valuation functions are modular, then any se-
quence of IR 1-deals will eventually result in an allocation
with maximal utilitarian social welfare.

2.2 MARA with Sharable Items
We now introduce a variant of the above MARA framework
where resources are sharable. This is the framework we shall
be working with for the remainder of this paper. A MARA

problem with indivisible sharable items is defined as a tuple
〈N ,R, (Σi)i∈N , (di,r)i∈N ,r∈R, (vi)i∈N 〉, and we present each
term of the tuple in the following:

• N = {1, 2, . . . , n} is a finite set of n agents.
• R is a finite set of m resources (or items).
• Σi is the set of strategies of agent i: it is a subset of

the power-set of R, i.e., ∀i ∈ N , Σi ⊆ 2R. We will also
refer to a strategy as a bundle. We denote by Σ the
joint strategy space or the set of all allocations, i.e.,
Σ =

Q
i∈N Σi. We will call σ ∈ Σ a strategy profile

or an allocation, i.e., σ = 〈σ1, . . . , σn〉 where ∀i ∈ N ,
σi ∈ Σi. We shall use the terms strategy profile (from
the congestion game literature) and allocation (from
the MARA literature) interchangeably.

• di,r : {1, . . . , n} → R is the delay perceived, or cost
experienced by agent i when using resource r. The
delay depends only on the number of agents that use
r. Let nr(σ) be the number of agents that use resource
r in allocation σ, i.e., nr(σ) = |{i ∈ N | r ∈ σi}|.
The delay of r experienced by agent i in allocation σ
is then di,r(nr(σ)). We shall assume that the delay
is a nondecreasing function in the number of agents
using the resource, i.e., di,r(k + 1) ≥ di,r(k) for all
k ∈ N. This models situations where an agent always
prefers not to share the resource. When other agents
also use the resource, the delay increases or remains
the same. A (delay) function d is convex if d(k + 2) −
d(k + 1) ≥ d(k + 1) − d(k) for all k ∈ N; it is concave
if d(k + 2) − d(k + 1) ≤ d(k + 1) − d(k) for all k ∈ N;
and it is linear if it is both convex and concave. That
is, if d is linear, then there exists an α ∈ R such that
d(k) = k · α for all k ∈ N.

• vi : Σi → R is the valuation function for agent i: for
each strategy σi ∈ Σi, i.e. for a bundle σi of resources
used by agent i, vi(σi) is the utility of using the set
σi, irrespective of the congestion. To simplify presen-
tation, we shall assume that all valuation functions are
normalised, i.e., vi(∅) = 0 for all agents i ∈ N (this as-
sumption does not affect any of our results). For mod-
ular valuation functions (as defined in Section 2.1), we
sometimes write vi(r) for vi({r}).

Now, the utility of agent i in profile σ is defined as

ui(σ) = vi(σi) −
X
r∈σi

di,r(nr(σ)).

That is, agent i receives a benefit from using the resources
of the bundle σi, but this benefit is reduced by the effects of
the congestion.

We say that a MARA problem with sharable resources is
symmetric when, for any given resource, all agents experi-
ence the same delay, i.e., ∀i ∈ N di,r = dr.

Observe that the original MARA framework can be sim-
ulated within the MARA framework with sharable items:
using a delay function with a very high delay for n ≥ 2,
it will not be rational for an agent to share any item (for
example, di,r(1) = 0 and ∀k ≥ 2, di,r(k) > maxσi∈Σi

vi(σi),
assuming positive valuation functions).

When the valuation functions are modular, we get a con-
gestion game with the delay function of resource r for agent i
being d�

i,r(k) = vi({r})− di,r(k), i.e., a player-specific game
as in the work of Milchtaich [9] and Ackermann et al. [1].

We are interested in distributed mechanisms, i.e., there is
no central entity that knows the valuation and delay function
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of each agent, and that decides on the allocation. Agents
need to communicate and are allowed to exchange resources.
As before, a deal δ = (σ, σ′) is a pair of allocations. We
consider the following types of simple deals:

• add(i, r): agent i adds to its bundle a single resource
it is not currently using. For r /∈ σi, agent i will have
σi ∪ {r} after the add(i, r) action.

• drop(i, r): agent i drops a resource it currently uses.
i.e., after the drop, agent i will use σi \ {r}.

• swap(i, j, r): agent i swaps the use of resource r with
agent j, i.e., agent i drops the use of r and agent j
adds the resource.

• 1-deal: a deal that concerns a single item, but possibly
multiple agents.

With nonsharable resources, the utility of agents not taking
part in the deal does not change. With sharable resources,
the utility of agents currently using a resource that is part
of the deal can be affected.

Deals may be coupled with monetary side payments. As
in Section 2.1, a payment function is a vector p = 〈p1, ..., pn〉
such that

P
i∈N pi = 0. A deal δ = (σ, σ′) is individually

rational (IR) if there exists a payment function p such that
∀i ∈ N , ui(σ

′) − ui(σ) > pi, except for agents i unaffected
by δ for whom pi = 0 is also permitted. Here, an agent i is
unaffected by a deal δ = (σ, σ′) if σ(i) = σ′(i) and |{j ∈ N |
r ∈ σ(j)}| = |{j ∈ N | r ∈ σ′(j)}| for all r ∈ σ(i). Note that
an agent i that does not change its bundle may still receive
a payment (from agents starting to use resources i uses) or
may make a payment (to agents that stop using resources i
uses). Side payments are important as they make it possible
for a single agent to start using a resource when the bundles
of the other agents remain the same. Otherwise, with a
congestion increase, the agents already using that resource
would suffer an unacceptable loss in utility.

2.3 Resource Control
With nonsharable resources, agents have complete control
over the resources they own. For example, if agent i wants
to use a particular resource owned by agent j, j must agree
to give up the item to i. With sharable resources, the notion
of control is less clear. We can differentiate two variants.

In the first variant, agents are free to use any resource they
wish. This means that there is no mechanism to prevent
an agent from starting to use a resource. This relates to
strategic games with self-interested agents.

In the second variant, agents must receive the consent
of the agents using a resource before starting to use that
resource. If the agents are rational, they will not accept that
a new agent uses the resource if the delay function is strictly
increasing. The only way to get access to a resource is either
to compensate the current users with a side payment, or to
perform a swap: to free other resource(s) that is (are) also
used by the current users.

In this paper, we study both variants. In Section 3, we as-
sume that agents accept and allow deals only when they are
beneficial, in particular, all agents owning a resource must
agree before allowing another agent to use that resource. We
study mechanisms that lead to allocations maximising util-
itarian social welfare. In Section 4, we assume that agents
are non-cooperative and are free to use any resource they
want. In that context, we investigate the problem of the
existence of a pure-strategy Nash equilibrium.

Note that we could also assume that each resource has a

single owner, who permits other agents to use the resource.
This is the case studied in the work of Bachrach and Rosen-
schein [2], in which an owner knows the private production
function of the resource and other agents can bid to use it.
The goal of that work is to find protocols where no agent has
an incentive to lie (e.g., the owner of a resource should not
lie about the production function). In our work, we assume
that the resources are initially allocated to the agents, and
they have to find an optimal allocation to use them.

3. OPTIMISING SOCIAL WELFARE
We now investigate a MARA problem with the following
properties: (1) the resources are indivisible and sharable;
(2) agents using a resource also share the control of that re-
source; and (3) side payments between agents are allowed.
In the following, we shall seek to identify protocols that lead
to an allocation that maximises utilitarian social welfare,
i.e., that maximise the function sw(σ) =

P
i∈N ui(σ) (in

the remainder of the paper, we will mostly just write “social
welfare”). We will show that we can guarantee convergence
of sequences of arbitrarily complex deals. We will also show
that a sequence of deals involving a single resource is suffi-
cient when the valuation functions are modular. Then, we
will present results in which we allow only certain types of
simple deals. We will prove the existence of some path in
some cases, and convergence of all paths in others.

3.1 General Convergence Results
We first show that Theorems 1 and 2 from Section 2.1 also
apply to the framework with sharable resources. Closely
following the approach familiar from the framework with
nonsharable resources [8], we first establish an important
lemma showing that side payments can be arranged in such a
way that a given deal is beneficial for all the agents involved
if and only if that deal increases social welfare.

Lemma 3. A deal δ = (σ, σ′) is IR iff sw(σ) < sw(σ′).

Proof. The proof of Lemma 1 in [8] goes through: That
an IR deal necessarily increases social welfare is shown by
summing the inequalities ui(σ

′)− ui(σ) > pi over all agents
and noting that the sum of the payments must be zero. To
prove that a deal is IR when social welfare increases, one
can check that the following function is a valid payment
function: pi = ui(σ

′) − ui(σ) − (sw(σ′) − sw(σ′))/n.

It is now easy to prove the counterpart of Theorem 1:

Theorem 4. Any sequence of IR deals will eventually re-
sult in an allocation of resources with maximal social welfare.

Proof. The proof is very close to the corresponding proof
in [8]: the number of allocations is finite and, by Lemma 3,
any IR deal increases social welfare and any improvement in
social welfare corresponds to an IR deal; so we must even-
tually reach an allocation maximising social welfare.

The significance of the theorem is that agents have no need
to consider anything but their individual interests. Every
single deal is bound to increase social welfare and there are
no local optima the system could get stuck in. However,
an IR deal may be quite complex as it may involve many
agents and many resources at the same time. Finding such
complex deals may turn out to be a difficult task. Under
some constraints, it is possible to consider simpler deals.
Indeed, we can prove a counterpart of Theorem 2:
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Theorem 5. If all valuation functions are modular, then
any sequence of IR 1-deals will eventually result in an allo-
cation with maximal social welfare.

Proof. The set of resources and agents is finite, hence
there is a finite number of allocations. Moreover, any IR deal
strictly increases social welfare (see Lemma 3). Hence, the
search for an allocation with maximal social welfare must
terminate in a finite number of deals. As termination is
guaranteed, we now must ensure there always exists an IR
1-deal from a suboptimal allocation.

Let σ and σ� be two allocations such that σ� maximise
social welfare and sw(σ) < sw(σ�). We denote by δσi,r

the characteristic function that returns 1 when resource r
is in σi and 0 otherwise. We can write the social wel-

fare of σ as: sw(σ) =
P

i∈N

“
vi(σi) −

P
r∈σi

di,r(nr(σ))
”

=
P

r∈R

P
i∈N δσi,r (vi({r}) − di,r(nr(σ))). This expres-

sion shows that the utility generated by at least one resource
must increase for social welfare to increase. Hence, a deal
involving that single resource must exist for improving so-
cial welfare. In addition, by Lemma 1, this deal will be IR,
which proves the theorem.

Theorem 5 is independent from any assumptions regarding
the delay functions; only the valuation functions are required
to be modular. Under this condition, by means of a sequence
of deals concerning a single resource each, it is possible to
reach an allocation that maximises social welfare. However,
each deal may involve many agents at the same time.

It is not always possible to decompose a complex deal into
a sequence of only add- or only drop-deals: swap-deals
are sometimes needed. For example, consider the following
resource allocation problem with two agents i and j and
one resource r: the valuation functions are vi(r) = 4 and
vj(r) = 6 and both agents have the same delay function
defined by dr(1) = 2 and dr(2) = 5. Let us assume that
agent i uses r, obtaining a utility of 4 − 2 = 2. The action
add(j, r) is not rational as the utility of agent i would drop
to 4 − 5 = −1 and agent j would receive 6 − 5 = 1, which
is not sufficient to compensate the drop of agent i. Only
swap(i, j, r) would be rational: agent j would get a utility
of 6 − 2 = 4, which is enough to compensate the drop of
utility of agent i (who loses 2 units of utility).

We now may ask whether Theorem 5 can be strengthened
by only allowing certain types of 1-deals, in particular add-,
drop-, and swap-deals.

3.2 ADD-Deals only from Empty Allocation
Let us first consider the case of protocols that only permit
add-deals. Clearly, for this case we cannot hope for a con-
vergence theorem, even under the strongest assumptions on
the delay functions, and even if the initial allocation is the
empty allocation. A simple counterexample would be the
case where an agent who has low (but above zero) valuation
for a resource r claims that resource first, after which no
sequence of add-deals could possibly still lead to an opti-
mal allocation (assuming there are many slower agents who
place a higher valuation on r).

For the case of MARA with nonsharable items, in the face
of failure of convergence by means of simple IR deals, Dunne
et al. [7] and Dunne and Chevaleyere [6] have studied the
problem of checking whether it is at least the case that a
sequence of deals of the desired type leading to an optimal
allocation exists for a given scenario (the cited works anal-

yse the computational complexity of this kind of problem).
This is an interesting question also for our framework: For a
given allocation problem, does there exist a sequence of IR
add-deals leading from the initial allocation to an optimal
allocation? Maybe somewhat surprisingly, we will be able to
give a positive answer to this question whenever the initial
allocation is the empty allocation and all delay functions are
nondecreasing and convex (symmetry is not required). We
first prove the following lemma:

Lemma 6. For allocation problems with a single resource
r, if all delay functions are nondecreasing and convex, and
if sw(σ) < sw(σ�) and N ⊂ N� for two allocations σ and
σ� with corresponding sets N = {i ∈ N | r ∈ σi} and
N� = {i ∈ N | r ∈ σ�

i }, then there exists an agent j ∈ N�\N
such that the deal add(j, r) will be IR in allocation σ.

Proof. We will show that add(j, r) is IR for any agent
j ∈ argmaxi{vi(r)− di,r(|N |) | i ∈ N� \N}. From sw(σ�) >
sw(σ) we get:

X
i∈N�

vi(r) − di,r(|N
�|) >

X
i∈N

vi(r) − di,r(|N |)

Let � = |N� \N |. Simplifying above inequality, and dividing
by � yields:

1

�

X
i∈N�\N

vi(r) − di,r(|N |) >
1

�

X
i∈N�

di,r(|N
�|) − di,r(|N |)

Given our choice of j, this entails:

vj(r) − dj,r(|N |) >
1

�

X
i∈N�

di,r(|N
�|) − di,r(|N |)

As each di,r is convex, we have 1

�
[di,r(|N

�|) − di,r(|N |)] ≥
di,r(|N | + 1) − di,r(|N |) for any agent i; and thus:

vj(r) − dj,r(|N |) >
X

i∈N�

di,r(|N | + 1) − di,r(|N |)

Now we subtract dj,r(|N | + 1) − dj,r(|N |) on either side of
the inequality:

vj(r) − dj,r(|N | + 1) >
X

i∈N�\{j}

di,r(|N | + 1) − di,r(|N |)

As each di,r is nondecreasing, the term di,r(|N | + 1) −
di,r(|N |) is nonnegative for all i, and we can subtract it
from the righthand side any number of times. Note that
N ⊆ N� \{j}. Thus:

vj(r) − dj,r(|N | + 1) >
X
i∈N

di,r(|N | + 1) − di,r(|N |)

The lefthand side of this inequality is the utility gain of j for
adding r to her bundle in allocation σ; the righthand side is
the loss in utility of the agents already holding r. That is,
above inequality expresses that the deal add(j, r) will be IR
in allocation σ.

The existence of an add-path from the empty allocation to
an optimal allocation now follows almost immediately:

Theorem 7. If all valuation functions are modular and
all delay functions are nondecreasing and convex, then there
exists a sequence of IR add-deals leading from the empty
allocation to an allocation with maximal social welfare.
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Proof. We have seen earlier that in modular domains we
can let agents negotiate over resources on an item-by-item
basis. So it suffices to prove the claim for scenarios with just
a single resource r.

Let σ� be an optimal allocation and let N� = {i ∈ N |
r ∈ σ�

i } be the set of agents holding r in that allocation.
Now consider any suboptimal allocation σ with N ⊂ N� for
N = {i ∈ N | r ∈ σi}. By Lemma 6, there exists an agent
j ∈ N� \N such that the deal add(j, r) is IR from σ. As
the initial allocation (i.e., the empty allocation) satisfies the
conditions required for Lemma 6 to apply and as any new
allocation produced this way satisfies the same conditions,
this shows that there always exists a finite sequence of IR
add-deals leading from the initial allocation to σ�.

Note that this result does not suggest any obvious protocol
for finding such an optimal sequence. The reason is that
it will be difficult for the agents to find out which agent j
should claim r at any given stage: in the proof (of Lemma 6),
j is defined as an agent belonging to the set N� \N , which
is unknown to the agents.

The restriction to convex delay functions in Theorem 7 is
necessary: If (some) agents have strictly concave delay func-
tions, then we can systematically construct examples where
there exists no IR add-path from the empty to an optimal
allocation. For instance, suppose there are a single resource
r and three agents with the same valuation function v with
v(r) = 5 and v(∅) = 0, and the same concave delay function
dr with dr(1) = 0 and dr(k) = 3 for k > 1. Then, if no agent
claims r, social welfare will be 0; if one agent claims r, social
welfare will be 5; if two agents do, it will be 2 · (5 − 3) = 4;
and if all three claim r, it will be 3 · (5 − 3) = 6 (maximal).
But the full allocation cannot be reached from the empty al-
location via an IR add-path, since adding the second agent
would result in a loss of social welfare and thus not be IR (cf.
Lemma 3). This situation is reminiscent of the maximality
theorems of Chevaleyre et al. [5], who amongst other things
show that no class of valuation functions strictly including
the modular functions will permit convergence by means of
IR 1-deals (for allocation problems with nonsharable items).

3.3 DROP-Deals only from Full Allocation
Next, we present a similar result for protocols that only allow
for IR drop-deals. Here we are able to establish a path-
existence property if we start from the full (rather than the
empty) allocation. Again, the core of the argument is in a
technical lemma:

Lemma 8. For allocation problems with a single resource
r, if all delay functions are nondecreasing and convex, and
if sw(σ) < sw(σ�) and N ⊃ N� for two allocations σ and
σ� with corresponding sets N = {i ∈ N | r ∈ σi} and
N� = {i ∈ N | r ∈ σ�

i }, then there exists an agent j ∈ N\N�

such that the deal drop(j, r) will be IR in allocation σ.

Proof. The proof is similar to that of Lemma 6; so we
only give a compressed version here. We will show that
drop(j, r) is IR for any agent j ∈ argmini{vi(r)−di,r(|N |) |
i ∈ N \N�}. Let � = |N \N�|. From sw(σ�) > sw(σ), after
some rewriting and dividing by �, we get:

1

�

X
i∈N�

di,r(|N |) − di,r(|N
�|) >

1

�

X
i∈N\N�

vi(r) − di,r(|N |)

Given our choice of j, this entails:

1

�

X
i∈N�

di,r(|N |) − di,r(|N
�|) > vj(r) − dj,r(|N |)

As each di,r is convex, we have di,r(|N |) − di,r(|N | − 1) ≥
1

�
[di,r(|N |) − di,r(|N

�|)] for all i; and as each di,r is nonde-
creasing, we have di,r(|N |) − di,r(|N | − 1) ≥ 0 and we can
add this term any number of times on the lefthand side:

X
i∈N

di,r(|N |) − di,r(|N | − 1) > vj(r) − dj,r(|N |)

The righthand side of this inequality is the utility lost by
agent j if she drops r; the lefthand side is the cost saved by
the other agents holding r. That is, this inequality states
that the deal drop(j, r) is IR in σ.

Theorem 9. If all valuation functions are modular and
all delay functions are nondecreasing and convex, then there
exists a sequence of IR drop-deals leading to an allocation
with maximal social welfare from the full allocation.

Proof. The claim follows from Lemma 8 in the same way
as Theorem 7 did follow from Lemma 6.

3.4 Mix of ADD/DROP/SWAP-Deals
We now turn our attention to more powerful protocols,
with the aim of deriving convergence rather than just path-
existence theorems. An important first result shows that if
we allow all of our three simple types of deals (add, drop,
and swap), then we can get convergence from any initial
allocation, albeit under stronger restrictions on the delay
functions (namely, we now require symmetry):

Theorem 10. If all valuation functions are modular and
all delay functions are symmetric as well as nondecreas-
ing and convex, then any sequence of IR add-, drop-, and
swap-deals will converge to an allocation with maximal so-
cial welfare.

Proof. As we are operating in modular domains, it suf-
fices to prove the claim for allocation problems with a sin-
gle resource r. Let σ be any suboptimal allocation and let
N = {i ∈ N | r ∈ σi}. All we need to prove is that there ex-
ists an IR add-, drop-, or swap-deal starting from σ. This
will show that even when the protocol is restricted to these
deal types, we can never get stuck in a suboptimal alloca-
tion; and as social welfare improves with every IR deal (cf.
Lemma 3), we must eventually reach an optimal allocation.

To simplify the presentation, we shall assume that no two
agents give the same value to r, i.e., vi(r) �= vj(r) when-
ever i �= j, but the proof easily extends to the general case.
Define for each k ≤ n the allocation σk as follows: r ∈ σk

i

if and only if #{j ∈ N | vj(r) > vi(r)} < k, i.e., this is
the allocation where the k top agents (in terms of valuing r)
obtain r. Observe that, since the delay functions are sym-
metric, amongst all allocations assigning exactly k agents to
r, allocation σk has maximal social welfare.

Now, let k = |N | be the number of agents holding r in the
current allocation σ. We distinguish three cases:

(1) σ �= σk: Then there exists an agent j with r �∈ σj such
that vj(r) > vi(r) for some agent i with r ∈ σi, i.e.,
the deal swap(i, j, r) will be IR (here we are use the
assumption that delay functions are symmetric).
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(2) σ = σk and there exists a k� > k with sw(σk�

) >
sw(σ): Then we must have N ⊂ N� for N� = {i ∈ N |
r ∈ σ�

i }, because in both allocations the k top agents
obtain r. Thus, as delay functions are nondecreasing
and convex, Lemma 6 applies and we can infer that
there exists an IR add-deal.

(3) σ = σk and there exists a k� < k with sw(σk�

) >
sw(σ): Then we must have N ⊃ N�. Thus, as de-
lay functions are nondecreasing and convex, Lemma 8
applies and there exists an IR drop-deal.

There are no further cases, so we are done.

This result is stronger than Theorem 5 in the sense that it
relies on a simpler class of deals (never involving more than
two agents at a time); it is weaker in the sense that it requires
stronger (but not unreasonable) restrictions to the range of
admissible delay functions. Compared to Theorems 7 and 9,
Theorem 10 establishes again a convergence property, rather
than just the existence of a path.

The symmetry assumption in Theorem 10 is necessary:
For example, if v1(r) = 10 and d1,r(k) = 6k, and vi(r) = 5
and di,r(k) = k for i ∈ {2, 3}, then the optimal allocation
where agents 2 and 3 hold r is not reachable from the allo-
cation where only agent 1 holds r by means of add-, drop-,
and swap-deals alone. Convexity is also a necessary condi-
tion (see the example at the end of Section 3.2).

3.5 Mix of ADD/SWAP-Deals with Control
Finally, we want to explore convergence for protocols using
just two of our simple deals, namely add and swap. As we
shall see, in this case we can prove convergence (from the
empty allocation) if we add an additional “control compo-
nent”that allows agents to avoid certain dead-ends. We shall
suggest two such control mechanisms for this setting. Both
results will heavily rely on the following technical lemma:

Lemma 11. For allocation problems with a single resource
r, if all delay functions are symmetric as well as nondecreas-
ing and convex, then any sequence of IR add- and swap-
deals starting from the empty allocation will converge to an
allocation with maximal social welfare, provided no add-
deals are applied once k� agents are holding r, where k� is
the maximum number of agents holding r in any allocation
with maximal social welfare.

Proof. Inspection of the proof of Theorem 10 shows that
as long as the number of agents currently holding r is at most
k�, either an IR add- or an IR swap-deal will be available
(or an optimal allocation has already been reached). Pro-
vided we never apply an add-deal once k� agents hold r,
this condition will continue to be satisfied. The claim of the
lemma follows.

The next theorem shows that there are natural protocols
for which the (seemingly cumbersome) precondition for the
applicability of Lemma 11 is satisfied:

Theorem 12. If all valuation functions are modular and
all delay functions are symmetric as well as nondecreasing
and convex, then any sequence of IR add- and swap-deals
starting from the empty allocation will converge to an allo-
cation with maximal social welfare, provided add-deals are
only applied when no swap-deal is IR.

Proof. Due to modularity, we can restrict attention to
allocation problems with a single resource r and Lemma 11

becomes applicable. Let k� be the maximal number of
agents holding r in an optimal allocation. All we need to
show is that once k� agents do hold r, no add-deal will
ever be applied. But this is clearly so if add-deals are only
applied when no more swap-deals are IR.

In allocation σ, we say that an IR deal δ = (σ, σ′) is greedy
with respect to a set Δ of deals applicable in σ, if it pro-
duces maximal social surplus of all the deals in Δ; that is,
if sw(σ′) ≥ sw(σ′′) for all σ′′ ∈ Δ. A sequence of greedy
deals of a given type is a sequence of deals for which the
next deal is always the deal maximising social surplus over
all applicable deals of the given type.

Theorem 13. If all valuation functions are modular and
all delay functions are symmetric as well as nondecreasing
and convex, then any sequence of greedy IR add- and swap-
deals starting from the empty allocation will converge to an
allocation with maximal social welfare.

Proof. Restricting once again attention to scenarios
with a single resource r (permissible due to modularity),
let k� be the maximal number of agents holding r in an op-
timal allocation. We need to show that whenever a greedy
protocol chooses an add-deal, then the number of agents
currently holding r is still less than k�. By Theorem 12, the
only critical case we need to account for is when there are
both IR add- and swap-deals available.

To simplify presentation, assume vi(r) �= vj(r) whenever
i �= j (this restriction is not crucial and the proof generalises
easily). Let σ be the current allocation, let N = {i ∈ N |
r ∈ σi}, and let k = |N |. Let j ∈ argmini{vi(r) | r ∈ σi}
be the agent placing the lowest value on r amongst those
holding r in σ; and let j′ = argmaxi{vi(r) | r �∈ σi} be the
agent putting the highest value on r of those not holding r.

Then the best possible swap-deal is swap(j, j′, r). It in-
creases social welfare by a margin of vj′(r)−vj(r). The best
possible add-deal is add(j′, r). It increases social welfare by
vj′(r)− (k +1) · dr(k +1)+ k · dr(k). Hence, under a greedy
protocol, an add-deal will only be chosen if:

vj(r) − (k + 1) · dr(k + 1) ≥ − k · dr(k)

Now, let Nk be the set of the top k agents in terms of valuing
r. As j valued r the least of all the k +1 agents in N ∪{j′},
we know that j �∈ Nk, and we can rewrite above inequality
as follows:X

i∈Nk∪{j}

vi(r) − dr(k + 1) ≥
X

i∈Nk

vi(r) − dr(k)

The lefthand side of this inequality is the social welfare gen-
erated if the k + 1 agents in Nk ∪ {j} hold r; the righthand
side is the social welfare for the best possible allocation in
which k agents hold r. That is, there are allocations in
which k + 1 agents claim r that are at least as good as the
best allocation in which k agents do. Hence, k� > k, which
means that under a greedy protocol, an add-deal will only
ever get applied if k� has not yet been reached. The claim
then follows from Lemma 11.

The control mechanism of Theorem 13 (greediness) may be
more relevant in practice than that of Theorem 12 (giving
swap precedence over add) because it is reasonable to as-
sume that agents will actively search for deals giving them
high profit first and thereby indirectly implement a sequence
of deals that will at least be approximately greedy.
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It is possible to derive corresponding results for protocols
allowing for drop- and swap-deals only, starting from the
full allocation. We omit the details here for lack of space.

4. NON-COOPERATIVE MARA
In the MARA framework with nonsharable resources, the
user of a resource had full control over it. With sharable
resources, the previous section dealt with situations where
the agents that share the use of a resource also share its
control: the acceptable deals are IR, i.e., all the agents in-
volved in a deal either benefit or are indifferent. In this
section, we consider situations where no such control exists:
an agent is free to use any resource it likes. In particular,
if an agent can gain utility by using an additional resource
(even if this means that other agents will suffer a decrease
of their utility), the agent will add the resource.

A first question that arises concerns the existence of a
Nash equilibrium: is there an allocation where each agent,
assuming no other agent changes its bundle, has no incentive
to use a different bundle. If the answer is negative, agents
will never agree on an allocation. If the answer is positive,
the problem will be for the agents to converge to such an
allocation. For this study, the interesting actions are the
ones performed by a single agent, i.e, an addition or a drop
of a set of resources, or a combination of both.

Formally, a strategy profile σ = 〈σ1, . . . , σn〉 is called
a pure-strategy Nash equilibrium (pure NE) if ∀i ∈ N ,
�σ′

i ⊆ R with σ′
i �= σi such that ui(σ

′) > ui(σ), where
σ′ = 〈σ, . . . , σi−1, σ

′
i, σi+1, . . . , σn〉.

The existence of a pure NE is a key property of conges-
tion games, as shown by the title of Rosenthal’s seminal pa-
per, “A class of games possessing pure-strategy Nash equilib-
ria” [11]. In his model, the delay function of a given resource
is the same for all agents. The agents, however, can have
different strategies, i.e., they may be restricted to use cer-
tain bundles. Milchtaich [9] introduced player-specific delay
functions, and proved the existence of NE when the strate-
gies of the players are restricted to a set of singletons (i.e.,
an agent can only use one resource). Ackermann et al. [1]
showed that the matroid property is a sufficient and maxi-
mal property on the structure of the player’s strategy space
for guaranteeing the existence of a pure NE.

Note that in our framework, we do not have any restriction
on the strategies of the agents: each agent can access and
use any of the resources. Rationality may restrict the set of
strategies, e.g., it may not be rational to use some bundles
of resources as this would lead to a negative utility for all
possible congestions.

4.1 Examples
In the most general case for a MARA problem with sharable
resources, there may not exist a pure NE. We consider the
example in Table 1, adapted from Milchtaich [10], with two
agents and six resources. Agents have the same delay func-
tion when they share a resource, and different when they use
it on their own. For any bundle other than the ones indi-
cated in the table the agents do not get any valuation. One
can check that there is a cycle of best responses: when 2
uses {b, d}, the best response of 1 is to use f ; if 1 uses f , 2’s
best response is to use {a, c}; when 2 uses {a, c}, 1 should in
turn use {a, d, e}; and finally, when 1 uses {a, d, e}, 2 should
use {b, d}. Hence, there is no pure strategy NE.

Furthermore, when a pure NE does exist, the correspond-

resource a b c d e f v1({a, d, e}) = 100
d1,r(1) 20 45 48 20 16 65 v1({f}) = 100
d2,r(1) 24 45 48 28 32 130 v2({b, d}) = 100
di,r(2) 28 45 48 30 48 195 v2({a, c}) = 100

Table 1: Example of game with no pure NE

ing allocation need not have maximal social welfare. For ex-
ample, consider the following symmetric problem with two
agents 1 and 2 and a single resource r: v1(r) = 4, v2(r) = 3,
d(1) = 0 and d(2) = 2. The social optimum is when agent 1
uses the resource, with a value of 4−0 = 4. However, agent 2
has an incentive to also use r as it can get 3− 2 = 1 instead
of 0. In that situation, however, the social welfare drops to
4 − 2 + 3 − 2 = 3, and agent 1 has no incentive to drop the
resource. Hence, a suboptimal allocation is a NE.

4.2 MARA with Pure Nash Equilibria
In the following, we focus our attention on MARA problems
possessing pure-strategy Nash equilibria. The first fact cov-
ers games where the cost of congestion is smaller than the
valuation of a bundle; hence, the allocation where all agents
use all resources is a pure NE.

Fact 14. Every allocation game in which marginal valua-
tion always exceeds delay, i.e., in which vi(σ∪{r})−vi(σ) >
di,r(k) for any k ≤ n (for all i ∈ N , σ ⊆ R, r ∈ R \σ), has
got a pure NE.

Proof. The allocation where every agent claims every
resource is a NE in this kind of game. (In fact, above in-
equality only needs to hold for k = n.)

In order to prove a result for MARA problems with modular
valuation functions, we first prove a lemma regarding allo-
cation games where the set of resources is a singleton. The
result is not surprising in view of the results of Milchtaich [9]
and Ackermann et al. [1].

Lemma 15. Every allocation game with a single resource
and with nondecreasing delay functions has got a pure NE.

Proof. Let A0 = N and for k ≥ 1, let Ak = {i ∈ N |
vi(r) − di,r(k) ≥ 0}, i.e., Ak is the set of agents having
nonnegative utility when k agents are using the resource.
Let k� = max{k ∈ [0, n] | |Ak| ≥ k}. Let A be a set
of k� agents such that Ak�+1 ⊆ A ⊆ Ak� . Such a set A
exists because |Ak� | ≥ k� by construction; Ak�+1 ⊆ Ak� by
nondecreasingness of the delay functions and |Ak�+1| ≤ k�

by maximality of k�. We claim that the allocation where all
agents in A use the resource is a pure NE. If i ∈ A, agent i
gets a nonnegative utility, hence, i has no incentive to drop
the resource. If i /∈ A, then i /∈ Ak�+1. Consequently, agent i
would not get positive utility if it added the resource.

We are now ready to present a theorem for allocation prob-
lems with modular valuation functions.

Theorem 16. Every allocation game with modular valu-
ation functions and nondecreasing delay functions has got a
pure NE.

Proof. For each resource r ∈ R, Lemma 15 guarantees
the existence of a pure NE σr. Let σ be the allocation where
the strategy of each agent i is the union of strategies in σr(i).
Given that for modular valuation functions we can treat the
problem item-by-item, the allocation σ is a NE.
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Theorem Result Val. Delay Symm. Deals Init. Alloc. Control

4 convergence any any no all any none
5 convergence modular any no 1-deals any none
7 existence modular n.d.+convex no add empty none
9 existence modular n.d.+convex no drop full none
10 convergence modular n.d.+convex yes add-drop-swap any none
12 convergence modular n.d.+convex yes add-swap empty precedence
13 convergence modular n.d.+convex yes add-swap empty greedy

Table 2: Summary of convergence and path-existence results

The fact that the agents are allowed to use any resource and
the modularity of the valuation functions make it possible to
treat the problem issue by issue. In other words, we have a
collection of independent 1-resource congestion games with
player-specific valuation functions.

5. CONCLUSION
We have introduced a powerful and flexible model of multi-
agent resource allocation with sharable items. The model
integrates features from models developed in two differ-
ent strands of the literature: the distributed approach to
resource allocation in multiagent systems and congestion
games studied in game theory. Most of our technical con-
tributions focus on specific instances of the general model,
particularly (but not exclusively) the case of allocation prob-
lems with agents that have modular valuation functions.

Our first set of results concerns conditions for the conver-
gence to a social optimum by means of simple negotiation
protocols. As for the previously studied case of nonsharable
resources, we have seen that convergence can always be guar-
anteed when arbitrarily complex deals are available, and
that deals involving just one resource suffice in modular do-
mains. Unlike for nonsharable resources, in our scenario the
latter type of deal may involve more than two agents, which
calls for a finer analysis: we have been able to show that
deals involving one resource and at most two agents suffice
when the delay functions meet certain conditions and that
the protocols can be further simplified by assuming that
agents are greedy in the sense of making the most profitable
deal first. We have proved the existence of a path to an op-
timum under weaker conditions. These results, summarised
in Table 2, complement existing ones on convergence for dif-
ferent MARA scenarios and deepen our understanding of
the area as a whole.

Our second set of results concerns the existence of pure-
strategy Nash equilibria. In particular, we have been able to
show that when valuation functions are modular (a strong
condition) and when delay functions are nondecreasing (a
very common and unproblematic assumption), then such an
equilibrium will always exist. This ties in nicely with exist-
ing results in the literature on congestion games.

Most of our results apply to particular instances of
the general model for multiagent resource allocation with
sharable items, by imposing relevant restrictions on valua-
tion functions, delay functions, or both. Future work should
seek to explore further such instances. For instance, we may
ask what types of protocols can guarantee convergence to
a social optimum if the class of potential valuation func-
tions is neither the class of modular functions nor the class
of all set functions. We may also investigate conditions for
convergence to allocations that are optimal in the sense of
maximising the utility of the weakest agent (egalitarian so-

cial welfare) or in the sense of being envy-free. Regarding
the existence of pure Nash equilibria, it would be interesting
to see how far we can generalise the two classes of games for
which we have obtained positive results without losing the
guarantee of the existence of a pure Nash equilibrium.
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